Terpene Isocyanides, I socyanates, and Isothiocyanates from the Okinawan Marine Sponge Stylissa sp.

Hidemichi Mitome, ${ }^{\dagger}$ Nao Shirato, ${ }^{\dagger}$ Hiroaki Miyaoka,*, ${ }^{\dagger}$ Yasuji Yamada, ${ }^{\dagger}$ and Rob W. M. van Soest ${ }^{\ddagger}$
School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, J apan, and Institutefor Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands

Received October 22, 2003

Seven new nitrogenous terpenoids, (1R*,6R*,7S*,10S*)-10-isothiocyanatocadin-4-ene (1), (1S*,2S*,5S*,6S*,7R*,8S*)-13-isothiocyanatocubebane (2), (1R*,3S*,4R*,7S*,8S*,12S*,13S*)-7-iso-cyanoamphilecta-10,14-diene (3), (1S*,3S*,4R*,7S*,8S*,12S*,13S*)-8-isocyanoamphilecta-11(20),14-diene (4), (3S*,4R*,7S*,8S*,11S*,13S*)-8-isocyanoamphilecta-1(12),14-diene (5), 8-isocyanatocycloamphilect-10-ene (6), and 8-isothiocyanatocyd oamphilect-10-ene(7), were isolated from the Okinawan sponge Stylissa sp., along with 12 known related compounds. Structural determinations of these compounds were made by spectroscopic analysis, and assessment was made of their cytotoxicity toward HeLa cells.

Terpene isocyanides, isocyanates, and isothiocyanates are frequently isolated from marine sponges. ${ }^{1,2} \mathrm{M}$ any such compounds express antimicrobial, ${ }^{3}$ antifungal, ${ }^{4}$ cytotoxic, ${ }^{5}$ antifouling, ${ }^{6}$ and antimalarial activity. ${ }^{7}$ These terpenoids are also interesting from the perspective of the origin of their nitrogenous functionalities. ${ }^{8}$ During the course of our investigation on the chemical constituents of Okinawan marine invertebrates, ${ }^{9}$ isolation was made of seven new nitrogenous terpenoids, (1R*,6R*,7S*,10S*)-10-isothio-cyanatocadin-4-ene (1), (1S*,2S*,5S*,6S*,7R*,8S*)-13isothiocyanatocubebane (2), (1R*,3S*,4R*,7S*,8S*,12S*, 13S*)-7-isocyanoamphilecta-10,14-diene (3), (1S*,3S*, 4R*,7S*,8S*,12S*,13S*)-8-isocyanoamphilecta-11(20),14diene (4), (3S*,4R*,7S*,8S*,11S*,13S*)-8-isocyanoamphi-lecta-1(12),14-diene (5), 8-i socyanatocyd oamphilect-10-ene (6), and 8-isothiocyanatocycloamphilect-10-ene (7) from the Okinawan sponge Stylissa sp., along with several known compounds of a related nature. Their structural elucidation and assessment for cytotoxicity toward HeLa cells were conducted in the present study.

Results and Discussion

Sponge specimens of Stylissa sp. (wet wt 2.4 kg) were extracted with MeOH and then acetone. The combined extracts were partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The EtOAc-soluble portion was partitioned between 80% aqueous MeOH and n-hexane. The n-hexane-soluble portion was purified to give new nitrogenous terpenoids 1-7 along with 12 known related compounds. ${ }^{10-16}$

Compounds 1 and 2 were found to have the same molecular formula $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NS}$ based on high-resolution mass measurement data. From IR (2086 and $2102 \mathrm{~cm}^{-1}$, respectively), UV (246 nm, both), and ${ }^{13} \mathrm{C}$ NMR ($\delta_{\mathrm{C}} 129.5$ and 128.7, respectively), both compounds appeared to be sesquiterpene isothiocyanates. Compound 1 was found to possess a trisubstituted $\mathrm{C}-\mathrm{C}$ double bond $\left[\delta_{\mathrm{H}} 5.47\right.$ ($1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=4.5), \delta_{\mathrm{C}} 123.5(\mathrm{CH}), 134.6(\mathrm{C})\right]$ according to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 1). Determination was made of the carbon sequences in 1, C-1 to C-3, C-1 to C-6, C-5 to C9, C-7 to

[^0]

1

2

3

4

$\overline{\mathrm{N}} \mathrm{C} \equiv$
5

6

7

C-11, and C-12 to C-13 through C-11 based on data from HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY. The HMBC spectrum indicated Me-15 to be correlated with C-3, C-4, and C-5, while Me14 correlated with C-1, C-9, and C-10. On the basis of these findings, the planar structure of $\mathbf{1}$ was clarified. The planar structure of 1 was identical to that of 10-isothiocyanatoca-din-4-ene, ${ }^{12}$ but these two compounds were found to be stereoisomers from a direct comparison of their NMR spectra. The relative configuration of $\mathbf{1}$ was determined on the basis of the following NOESY correlations: those of $\mathrm{H}-1$ with $\mathrm{H}-7$ and $\mathrm{Me}-14$, and that of $\mathrm{H}-6$ with $\mathrm{Me}-13$. The structure of $\mathbf{1}$ was confirmed to be ($1 \mathrm{R}^{*}, 6 \mathrm{R}^{*}, 7 \mathrm{~S}^{*}, 10 \mathrm{~S}^{*}$)-10-isothiocyanatocadin-4-ene. In compound 2 were found present the sequences $\mathrm{C}-2$ to $\mathrm{C}-10, \mathrm{C}-8$ to $\mathrm{C}-12$, and $\mathrm{C}-2$ to $\mathrm{C}-11$, on the basis of HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data. The planar structure was derived on the basis of the following correlations in the HMBC spectrum: those of C-1, C-6, C-7, and $\mathrm{C}-10$ with $\mathrm{H}-2$; those of $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-6$, and $\mathrm{C}-7$ with $\mathrm{H}-10$; those of $\mathrm{C}-5$ and $\mathrm{C}-13$ with $\mathrm{Me}-14$; and those of $\mathrm{C}-5$ and $\mathrm{C}-13$ with $\mathrm{Me}-15$. From comparison of the NMR spectra of 2 and (1 S $^{*}, 2 \mathrm{R}^{*}, 5 \mathrm{~S}^{*}, 6 \mathrm{~S}^{*}, 7 \mathrm{R}^{*}, 8 \mathrm{~S}^{*}$)-13-isothiocyanatocube-

Table 1. NMR Data for $\mathbf{1}$ and $\mathbf{2}$

no.	1		2	
	$\delta_{C}{ }^{\text {a }}$	$\delta_{H}{ }^{\text {b }}$	$\delta_{C^{a}}$	$\delta_{\mathrm{H}}{ }^{\text {b }}$
1	44.4 (CH)	1.77 (1H, m)	30.8 (C)	
2	$20.2\left(\mathrm{CH}_{2}\right)$	1.88 (1H, m)	30.9 (CH)	$\begin{aligned} & 1.81(1 \mathrm{H}, \mathrm{dq} \\ & \quad \mathrm{J}=6.6,6.9) \end{aligned}$
		1.72 (1H, m)		
3	$31.0\left(\mathrm{CH}_{2}\right)$	2.03 (1H, m)	$33.1\left(\mathrm{CH}_{2}\right)$	1.62 (1H, m)
		2.02 (1H, m)		0.90 (1H, m)
4	134.6 (C)		$20.8\left(\mathrm{CH}_{2}\right)$	1.52 (1H, m)
				0.92 (1H, m)
5	123.5 (CH)	$\begin{gathered} 5.47(1 \mathrm{H}, \mathrm{~d} \\ \mathrm{J}=4.5) \end{gathered}$	44.9 (CH)	1.92 (1H, m)
6	35.3 (CH)	1.98 (1H, m)	16.7 (CH)	$\begin{gathered} 0.83(1 \mathrm{H}, \mathrm{~d}, \\ J=4.2) \end{gathered}$
7	43.5 (CH)	1.29 (1H, m)	$31.8(\mathrm{CH})$	$\begin{gathered} 1.06(1 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=4.2) \end{gathered}$
8	$20.0\left(\mathrm{CH}_{2}\right)$	1.48 (1H, m)	34.7 (CH)	2.26 (1H, m)
		1.17 (1H, m)		
9	$34.4\left(\mathrm{CH}_{2}\right)$	1.83 (1H, m)	$29.2\left(\mathrm{CH}_{2}\right)$	1.54 (1H, m)
		1.77 (1H, m)		0.72 (1H, m)
10	64.9 (C)		$31.6\left(\mathrm{CH}_{2}\right)$	1.72 (1H, m)
				1.71 (1H, m)
11	26.3 (CH)	1.88 (1H, m)	$20.3\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 1.01(3 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=6.9) \end{gathered}$
12	$21.4\left(\mathrm{CH}_{3}\right)$	0.88 (3H, d,	18.3 ($\left.\mathrm{CH}_{3}\right)$	1.00 (3H, d,
		$J=7.0)$		$J=6.6)$
13	$15.1\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 0.80(3 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=7.0) \end{gathered}$	65.1 (C)	
14	$26.9\left(\mathrm{CH}_{3}\right)$	1.50 (3H, s)	$27.5\left(\mathrm{CH}_{3}\right)$	1.41 (3H, s)
15	$23.4\left(\mathrm{CH}_{3}\right)$	1.66 (3H, s)	$26.8\left(\mathrm{CH}_{3}\right)$	1.41 (3H, s)
NCS	129.5 (C)		128.7 (C)	

${ }^{\text {a }} 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{\mathrm{b}} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
bane, ${ }^{17} \mathbf{2}$ was shown to likely be a stereoisomer at the C-2 position. The relative configuration of $\mathbf{2}$ was confirmed to be 1S*,2S*,5S*,6S*,7R*,8S* from the following NOESY correlations: $\mathrm{Me}-11$ and $\mathrm{Me}-12$ with $\mathrm{H}-10 \beta$ ($\delta_{\mathrm{H}} 1.71$); $\mathrm{H}-5$ and $\mathrm{Me}-12$ with $\mathrm{H}-6$; $\mathrm{H}-2$ and $\mathrm{Me}-15$ with $\mathrm{H}-7$.

The common molecular formula, $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}$, was established on the basis of high-resolution mass measurement data for each of 3, 4, and 5. All these compounds were found to be diterpene isocyanides from IR (2130, 2123, and 2127 cm^{-1}, respectively) and ${ }^{13} \mathrm{C}$ NMR ($\delta_{\mathrm{C}} 152.9,155.4$, and 155.4, respectively). Compound 3 possessed the carbon sequences $\mathrm{C}-1$ to $\mathrm{C}-6, \mathrm{C}-1$ to $\mathrm{C}-12, \mathrm{C}-1$ to $\mathrm{C}-14, \mathrm{C}-3$ to $\mathrm{C}-18$, $\mathrm{C}-4$ to $\mathrm{C}-13, \mathrm{C}-8$ to $\mathrm{C}-10, \mathrm{C}-8$ to $\mathrm{C}-13$, and $\mathrm{C}-12$ to $\mathrm{C}-13$, from HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data. The planar structure of 3 was identical to that of the known metabolite (1S*,3S*,4R*,7S*,8S*,12S*,13S*)-7-isocyanoamphilecta-10,14-diene ${ }^{14}$ as indicated by the following HMBC correlations: C-7 with H-5; C-6 with H-8; C-14, C-15, and Me-17 with $\mathrm{Me}-16$; $\mathrm{C}-6$ with $\mathrm{Me}-19$; $\mathrm{C}-10, \mathrm{C}-11$, and $\mathrm{C}-12$ with $\mathrm{Me}-20$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 (Table 2), however, differed from that of (1S*,3S*,4R*,7S*,8S*,12S*, 13S*)-7-isocyanoamphilecta-10,14-diene as given in the literature. The following NOESY correlations clearly demonstrated 3 to be a C-1 epimer of (15*,3S*,4R*,7S*,8S*, 12S*,13S*)-7-isocyanoamphilecta-10,14-diene: H-13 and $\mathrm{H}-14$ with $\mathrm{H}-3$; $\mathrm{H}-4$ and $\mathrm{H}-12$ with $\mathrm{H}-8$; $\mathrm{Me}-19$ with $\mathrm{H}-13$.

Compound 4 was noted to possess four methyls, five sp^{3} methylenes, one sp^{2} methylene, $\mathrm{six} \mathrm{sp}^{3}$ methines, one sp^{2} methine, one sp^{3} quaternary carbon, two sp^{2} quaternary carbons, and one sp quaternary carbon from ${ }^{13} \mathrm{C}$ NMR and DEPT spectra (Table 3). HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations indicated the connections from $\mathrm{C}-1$ to $\mathrm{C}-7, \mathrm{C}-1$ to $\mathrm{C}-12$, C-1 to C-14, C-3 to C-18, C-4 to C-13, C-7 to C-19, C-9 to $\mathrm{C}-10$, and $\mathrm{C}-12$ to $\mathrm{C}-13$ in 4 . HMBC correlations between $\mathrm{C}-8 / \mathrm{C}-9$ and $\mathrm{H}-13 ; \mathrm{C}-14 / \mathrm{C}-15 / \mathrm{Me}-17$ and $\mathrm{Me}-16 ; \mathrm{C}-4$ and $\mathrm{Me}-18$; $\mathrm{C}-8$ and $\mathrm{Me}-19$; and $\mathrm{C}-10 / \mathrm{C}-11 / \mathrm{C}-12$ and $\mathrm{H}-20$ confirmed the planar structure of 4 to be 8 -isocyanoam-

Table 2. NMR Data for $\mathbf{3}$

no.	$\delta_{\mathrm{C}^{\mathrm{a}}}$	$\delta_{\mathrm{H}}{ }^{\mathrm{b}}$
1	$33.0(\mathrm{CH})$	$2.92(1 \mathrm{H}, \mathrm{m})$
2	$35.5\left(\mathrm{CH}_{2}\right)$	$1.29(1 \mathrm{H}, \mathrm{m})$
		$1.05(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.2,4.0)$
3	$31.1(\mathrm{CH})$	$1.26(1 \mathrm{H}, \mathrm{m})$
4	$37.4(\mathrm{CH})$	$0.95(1 \mathrm{H}, \mathrm{m})$
5	$26.8\left(\mathrm{CH}_{2}\right)$	$1.88(1 \mathrm{H}, \mathrm{m})$
		$0.93(1 \mathrm{H}, \mathrm{m})$
6	$34.0\left(\mathrm{CH}_{2}\right)$	$2.04(1 \mathrm{H}, \mathrm{m})$
		$1.80(1 \mathrm{H}, \mathrm{m})$
7	$60.6(\mathrm{C})$	-
8	$42.7\left(\mathrm{CH}^{2}\right)$	$1.82(1 \mathrm{H}, \mathrm{m})$
9	$25.0\left(\mathrm{CH}_{2}\right)$	$2.26(1 \mathrm{H}, \mathrm{m})$
		$2.13(1 \mathrm{H}, \mathrm{m})$
10	$121.8\left(\mathrm{CH}^{2}\right)$	$5.44(1 \mathrm{H}, \mathrm{m})$
11	$133.8(\mathrm{C})$	
12	$44.5\left(\mathrm{CH}^{2}\right)$	$2.00(1 \mathrm{H}, \mathrm{m})$
13	$34.6\left(\mathrm{CH}^{2}\right)$	$1.70(1 \mathrm{H}, \mathrm{m})$
14	$127.4\left(\mathrm{CH}^{2}\right)$	$5.46(1 \mathrm{H}, \mathrm{m})$
15	$131.3(\mathrm{C})$	
16	$26.0\left(\mathrm{CH}_{3}\right)$	$1.72(3 \mathrm{H}, \mathrm{s})$
17	$17.8\left(\mathrm{CH}_{3}\right)$	$1.64(3 \mathrm{H}, \mathrm{s})$
18	$19.8\left(\mathrm{CH}_{3}\right)$	$0.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0)$
19	$26.5\left(\mathrm{CH}_{3}\right)$	$1.57(3 \mathrm{H}, \mathrm{s})$
20	$21.1\left(\mathrm{CH}_{3}\right)$	$1.72(3 \mathrm{H}, \mathrm{s})$
NC	$152.9(\mathrm{C})$	

a $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{\text {b }} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
Table 3. NMR Data for $\mathbf{4}$ and $\mathbf{5}$

no.	4		5	
	$\delta \mathrm{C}^{\text {a }}$	$\delta_{\mathrm{H}}{ }^{\text {b }}$	$\delta \mathrm{C}^{\text {a }}$	$\delta \mathrm{H}^{\text {b }}$
1	37.4 (CH)	2.37 (1H, m)	132.2 (C)	
2	$41.1\left(\mathrm{CH}_{2}\right)$	1.53 (1H, m)	$41.4\left(\mathrm{CH}_{2}\right)$	1.85 (1H, m)
		0.94 (1H, m)		1.76 (1H, m)
3	36.2 (CH)	1.13 (1H, m)	32.5 (CH)	1.29 (1H, m)
4	42.7 (CH)	1.15 (1H, m)	41.2 (CH)	1.32 (1H, m)
5	$29.8\left(\mathrm{CH}_{2}\right)$	2.00 (1H, m)	$28.9\left(\mathrm{CH}_{2}\right)$	1.92 (1H, m)
		0.85 (1H, m)		0.93 (1H, m)
6	$29.9\left(\mathrm{CH}_{2}\right)$	1.56 (1H, m)	$30.7\left(\mathrm{CH}_{2}\right)$	1.62 (1H, m)
		1.46 (1H, m)		1.47 (1H, m)
7	40.7 (CH)	1.38 (1H, m)	41.9 (CH)	1.50 (1H, m)
8	66.8 (C)		66.3 (C)	
9	38.6 (CH_{2})	2.24 (1H, m)	$35.2\left(\mathrm{CH}_{2}\right)$	2.22 (1H, m)
		1.27 (1H, m)		1.57 (1H, m)
10	$32.8\left(\mathrm{CH}_{2}\right)$	2.38 (1H, m)	28.6 (CH_{2})	1.57 (1H, m)
		2.23 (1H, m)		1.56 (1H, m)
11	149.4 (C)		36.3 (CH)	2.17 (1H, m)
12	45.9 (CH)	$\begin{aligned} & 1.95 \text { (1 } 1 \mathrm{H}, \mathrm{dd}, \\ & J=11.0,10.5) \end{aligned}$	131.5 (C)	
13	54.5 (CH)	0.95 (1H, m)	52.2 (CH)	1.83 (1H, m)
14	131.0 (CH)	$\begin{gathered} 4.86(1 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=8.7) \end{gathered}$	126.8 (CH)	5.67 (1H, s)
15	129.1 (C)		131.6 (C)	
16	25.6 ($\left.\mathrm{CH}_{3}\right)$	1.64 (3H, s)	25.1 (CH_{3})	1.70 (3H, s)
17	$17.8\left(\mathrm{CH}_{3}\right)$	1.65 (3H, s)	19.1 (CH_{3})	1.63 (3H, s)
18	19.6 (CH_{3})	$\begin{gathered} 0.89(3 \mathrm{H}, \mathrm{~d}, \\ J=6.5) \end{gathered}$	$18.4\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 0.88(3 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=6.5) \end{gathered}$
19	$15.7\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 0.99(3 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=6.3) \end{gathered}$	$15.5\left(\mathrm{CH}_{3}\right)$	$\begin{gathered} 1.01(3 \mathrm{H}, \mathrm{~d}, \\ \mathrm{J}=6.5) \end{gathered}$
20	$107.4\left(\mathrm{CH}_{2}\right)$	4.74 (1H, s)	$20.8\left(\mathrm{CH}_{3}\right)$	1.10 (3H, d,
				$\mathrm{J}=6.5)$
		4.52 (1H, s)		(3H, d,
NC	155.4 (C)		155.4 (C)	$\mathrm{J}=6.5$)

a $125 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{\text {b }} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
philecta-11(20),14-diene. The relative stereochemistry of 4 was clearly shown to be 1S*,3S*,4R*,7S*,8S*,12S*,13S* on the basis of the following NOESY correlations: $\mathrm{H}-4 / \mathrm{H}-$ 12, Me-18; H-9 $\beta\left(\delta_{H} 1.27\right) / \mathrm{H}-7$; H-13/H-1, H-3, H-7; H-14/ $\mathrm{Me}-16, \mathrm{H}-12$.

From ${ }^{13} \mathrm{C}$ NMR and DEPT, all 21 carbons of 5 were observed as five methyls, five $s p^{3}$ methylenes, five $s p^{3}$

Table 4. NMR Data for 6 and 7

no.	6		7	
	$\delta_{C}{ }^{\text {a }}$	$\delta_{H}{ }^{\text {b }}$	$\delta_{C}{ }^{\text {a }}$	$\delta_{\mathrm{H}}{ }^{\text {b }}$
1	37.8 (CH)	1.36 (1H, m)	37.9 (CH)	1.31 (1H, m)
2	$38.2\left(\mathrm{CH}_{2}\right)$	1.20 (1H, m)	$43.1\left(\mathrm{CH}_{2}\right)$	1.56 (1H, m)
		1.20 (1H, m)		0.90 (1H, m)
3	43.2 (CH)	1.55 (1H, m)	38.1 (CH)	1.20 (1H, m)
4	43.2 (CH)	1.05 (1H, m)	43.2 (CH)	1.04 (1H, m)
5	30.0 (CH_{2})	1.96 (1H, m)	$29.9\left(\mathrm{CH}_{2}\right)$	2.02 (1H, m)
		1.48 (1H, m)		0.89 (1H, m)
6	$30.0\left(\mathrm{CH}_{2}\right)$	1.36 (1H, m)	$30.1\left(\mathrm{CH}_{2}\right)$	1.54 (1H, m)
		1.28 (1H, m)		1.38 (1H, m)
7	41.7 (CH)	1.33 (1H, m)	42.0 (CH)	1.41 (1H, m)
8	62.2 (C)		66.0 (C)	
9	38.6 (CH_{2})	$\begin{aligned} & 2.32(1 \mathrm{H}, \mathrm{dd}, \\ & \mathrm{J}=16.4,5.6) \end{aligned}$	$37.3\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 2.42(1 \mathrm{H}, \mathrm{dd}, \\ & \mathrm{J}=17.6,5.5) \end{aligned}$
		2.07 (1H, m)		2.06 (1H, m)
10	116.0 (CH)	5.21 (1H, m)	115.4 (CH)	5.20 (1H, m)
11	137.6 (C)		137.6 (C)	
12	44.5 (CH)	1.40 (1H, m)	44.4 (CH)	1.48 (1H, m)
13	50.8 (CH)	1.07 (1H, m)	50.7 (CH)	$\begin{aligned} & 1.11(1 \mathrm{H}, \mathrm{t}, \\ & \mathrm{J}=10.0) \end{aligned}$
14	46.3 (CH_{2})	1.32 (1H, m)	$46.2\left(\mathrm{CH}_{2}\right)$	1.32 (1H, m)
		1.03 (1H, m)		1.07 (1H, m)
15	$32.2\left(\mathrm{CH}_{3}\right)$		$31.7\left(\mathrm{CH}_{3}\right)$	
16	$31.7\left(\mathrm{CH}_{3}\right)$	0.92 (3H, s)	$32.2\left(\mathrm{CH}_{3}\right)$	0.93 (3H, s)
17	$25.1\left(\mathrm{CH}_{3}\right)$	0.80 (3H, s)	$25.1\left(\mathrm{CH}_{3}\right)$	0.79 (3H, s)
18	19.6 (CH_{3})	$\begin{aligned} & 0.94(3 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=6.0) \end{aligned}$	19.5 (CH_{3})	$\begin{aligned} & 0.93(3 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=6.7) \end{aligned}$
19	15.5 ($\left.\mathrm{CH}_{3}\right)$	$\begin{aligned} & 0.90(3 \mathrm{H}, \mathrm{~d}, \\ & \mathrm{J}=6.4) \end{aligned}$	15.6 (CH_{3})	$\begin{aligned} & 0.99 \text { (3H, d, } \\ & \mathrm{J}=6.3) \end{aligned}$
20	47.6 ($\left.\mathrm{CH}_{2}\right)$	1.88 (1H, m)	$47.5\left(\mathrm{CH}_{2}\right)$	1.92 (1H, m)
		1.87 (1H, m)		1.88 (1H, m)

a $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ${ }^{\text {b }} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
methines, one sp^{2} methine, one sp^{3} quaternary carbon, three sp^{2} quaternary carbons, and one sp quaternary carbon (Table 3). The sequences $\mathrm{C}-2$ to $\mathrm{C}-7, \mathrm{C}-3$ to $\mathrm{C}-18$, $\mathrm{C}-4$ to $\mathrm{C}-13, \mathrm{C}-9$ to $\mathrm{C}-11$, and $\mathrm{C}-11$ to $\mathrm{C}-20$ were noted in the HMQC and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of 5 . The planar structure was clarified from the following HMBC correlations: $\mathrm{C}-1 / \mathrm{C}-8 / \mathrm{C}-9 / \mathrm{C}-12$ and $\mathrm{H}-13 ; \mathrm{C}-2$ and $\mathrm{H}-14$; $\mathrm{C}-14 / \mathrm{C}-$ $15 / \mathrm{C}-17$ and $\mathrm{Me}-16 ; \mathrm{C}-8$ and $\mathrm{Me}-19$; $\mathrm{C}-12$ and $\mathrm{Me}-20$. NOESY correlations between $\mathrm{H}-3 / \mathrm{H}-7 / \mathrm{H}-11$ and $\mathrm{H}-13$ and between $\mathrm{H}-4$ and $\mathrm{Me}-18$ indicated 5 to be (3S*,4R*,7S*,8S*,-11S*,13S*)-8-isocyanoamphilecta-1(12),14-diene.

From NMR (Table 4), MS, IR, and UV spectra, $6\left(\mathrm{C}_{21} \mathrm{H}_{31^{-}}\right.$ $\mathrm{NO})$ and $7\left(\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NS}\right)$ appeared to be cycloamphilectane diterpenoids, with an isocyanato and isothiocyanato group at $\mathrm{C}-8$, respectively. The structures of 6 and 7 were determined by synthesis from 8-isocyanocydloamphilect-10-ene. ${ }^{16}$ On treating 8-isocyanocycloamphilect-10-ene with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in benzene, ${ }^{18}$ isocyanate 6 was obtained (Figure 1). Isothiocyanate $\mathbf{7}$ was afforded from 8-isocyanocycloam-philect-10-ene with use of sulfur, tellurium, and $\mathrm{Et}_{3} \mathrm{~N}$ in THF. ${ }^{19}$ F or X-ray crystallography, 8-isocyanocycloamphi-lect-10-ene was converted to p-bromobenzamide 9 by hydrolysis of the isonitrile group to give amine 8, followed by amidation (Figure 2). The absolute configuration of 8-isocyanocycloamphilect-10-ene was confirmed to be $1 S, 3 S, 4 R, 7 S, 8 S, 12 S, 13 S$ on the basis of the Flack parameter ${ }^{20}[0.023(5)]$ in the X-ray analysis of p-bromobenzamide 9 (Figure 3). ${ }^{21}$ These results clearly indicate 6 and 7 to each have the $1 \mathrm{~S}, 3 \mathrm{~S}, 4 \mathrm{R}, 7 \mathrm{~S}, 8 \mathrm{~S}, 12 \mathrm{~S}, 13 \mathrm{~S}$ configuration.

The new nitrogenous terpenoids (1, 2, 3, 5, 6, and 7) were found to display weak cytotoxicity ($\mathrm{IC}_{50} 73.7,57.8,20.0$, 11.2, 38.3, and $88.7 \mu \mathrm{M}$, respectively) toward HeLa cells in vitro. 22,23

8-isocyano-cycloamphilect-10-ene
$\mathrm{Pb}(\mathrm{OAc})_{4}$

Figure 1. Synthesis of $\mathbf{6}$ and $\mathbf{7}$ from 8-isocyanocycloamphilect-10-ene.

Figure 2. Synthesis of 9 from 8-isocyanocycloamphilect-10-ene.

Figure 3. ORTEP drawing of p-bromobenzamide 9.

Experimental Section

General Experimental Procedures. Optical rotation was measured with a J ASCO DIP-360 polarimeter, IR spectra were taken with a J ASCO FT-IR/620 spectrometer, and UV spectra were taken with a J ASCO V-550 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX-400 and DRX500 spectrometers. Chemical shifts were expressed on a δ (ppm) scale with tetramethylsilane (TMS) as internal standard (s, singlet; d, doublet; t, triplet; m, multiplet; br, broad). EIMS were obtained with a Thermo Quest TSQ 700 spectrometer, and the high-resolution EIMS (HREIMS) spectrum was ob-
tained using a VG Auto Spec E spectrometer. Electorospray ionization (ESI) MS was obtained with a Micromass LCT spectrometer. X-ray diffraction was measured on a Bruker MXC18 KHF22 diffractometer. Flash column chromatography was carried out on Kanto Chemical silica gel 60N (spherical, neutral) $40-50 \mu \mathrm{~m}$ or ODS Wakogel LP-40 C-18. HPLC separation was conducted using a YMC-Pack R\&D ODS (250 $\times 20 \mathrm{~mm}$) column and UV detector (254 nm).

Animal Material. Sponge specimens (Stylissa sp. (family Axinellidae)) weretaken from the coral reef of IriomoteIsland, Okinawa, J apan, at a depth of 5 m by hand using scuba, in J une 2001. A voucher specimen has been deposited at University of Amsterdam (ZMA POR 17253), and another may be found at Tokyo University of Pharmacy and Life Science (S-01-2).

Extraction and Isolation. Wet specimens (2.4 kg) were cut into small pieces and extracted with $\mathrm{MeOH}(8.0 \mathrm{~L} \times 4$) and then acetone ($8.0 \mathrm{~L} \times 1$). The combined extract (146 g) was concentrated and partitioned between EtOAc ($2.0 \mathrm{~L} \times 3$) and water (1.0 L) to give an EtOAc-soluble portion (18.6 g), which was then dissolved in 80% aqueous $\mathrm{MeOH}(700 \mathrm{~mL}$) and extracted with n-hexane ($400 \mathrm{~mL} \times 4$) to afford an n -hexane-soluble portion (14.8 g).

The n -hexane-soluble portion was chromatographed on Si gel with n-hexane, EtOAc, and then MeOH as eluent to produce fractions FH-1 (0.44 g), -2 (0.81 g), -3 (3.32 g), -4 (3.17 g), $-5(1.37 \mathrm{~g})$, and $-6(5.44 \mathrm{~g})$.

Flash ODS-Si gel column chromatography (elution with acetone-water (9:1)) was conducted on $\mathrm{FH}-2$ to give fractions FH-21 (718 mg) and -22 (89.8 mg). The former underwent flash ODS-Si gel column chromatography with acetonitrile to provide ent-epi polasin ${ }^{10}(20.8 \mathrm{mg})$ and $2(284 \mathrm{mg})$. The ODS-H PLC of $\mathrm{FH}-22$ (elution with acetonitrile then MeOH -acetone (4: 1)) provided $6(24.3 \mathrm{mg})$ and $\mathbf{7}(29.0 \mathrm{mg})$.

The flash Si gel column chromatography of FH-3 (elution with n-hexane) produced fractions FH-31 (3.21 g) and FH-32 (84.6 mg). FH-31 flash ODS-Si gel column chromatography (elution with acetone-water (9:1)) and ODS-HPLC (elution with acetonitrile then MeOH -water (4:1)) gave 10-isothiocy-anatoamorph-4-ene ${ }^{13}(2.05 \mathrm{~g})$ and 10α-isothiocyanoall oaromadendrane ${ }^{11}$ (171 mg). FH-32 ODS-HPLC (elution with aceto-nitrile-MeOH (1:1)) afforded $\mathbf{1}(24.5 \mathrm{mg}$) and 10-isothiocyanato-cadin-4-ene ${ }^{12}$ (2.7 mg)
FH-4 underwent flash ODS-Si gel col umn chromatography (elution with acetonitrile) to give fractions FH-41 (2.45 g) and -42 (714 mg). ODS-HPLC of the former fraction (elution with MeOH then acetonitrile-acetone (49:1)) provided 8-isocyanocyd oamphilect-10-ene ${ }^{16}$ (2.00 g), 8-isocyanocycl oamphilect-11ene ${ }^{16}(418 \mathrm{mg}), 4(4.1 \mathrm{mg})$, and $5(29.8 \mathrm{mg})$.

FH-5 ODS-HPLC (elution with acetonitrile then acetoni-trile- MeOH (7:3)) produced 10-i sothiocyanatoamorph-5-en-4ol ${ }^{13}$ (23.6 mg), (1S*,3S*,4R*,7S*,8S*,12S*,13S*)-7-isocyano-amphilecta-10,14-diene ${ }^{14}$ (98.4 mg), (1S*,3S*,4R*,7S*,8S*, 12S*,13S*)-7-isocyanoamphilecta-11(20),14-diene ${ }^{14}$ (247 mg), (3S*,4R*,7S*,8R*,13R*,14R*)-7-isocyanoneoamphilecta-11,15diene ${ }^{15}$ (173 mg), (1(14)-E,3S*,4R*,7S*,8S*,11R*,12R*,13R*)-7-isocyanoneoamphilecta-1(14),15-diene ${ }^{14}$ ($42,7 \mathrm{mg}$), 3 (101 mg), and (1R*,3S*,4R*,7S*,8S*,12S*,13S*)-7-isocyanoamphi-lecta-11(20),14-di ene ${ }^{14}$ (135 mg).
(1R*,6R*,7S*,10S*)-10-I sothiocyanatocadin-4-ene (1): colorless powder; $\mathrm{mp} 54-56{ }^{\circ} \mathrm{C}$; $[\alpha]^{26} \mathrm{D}+75.7\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right)$; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 246$ (1085) nm; IR (KBr) $v_{\text {max }} 2086 \mathrm{~cm}^{-1}$ ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table $1^{1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation (H / H) $\mathrm{H}-1 / \mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.88\right), \mathrm{H}-6 ; \mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.88\right) / \mathrm{H}-3 \alpha\left(\delta_{\mathrm{H}} 2.02\right) ; \mathrm{H}-2 \beta$ $\left(\delta_{\mathrm{H}} 1.72\right) / \mathrm{H}-3 \beta\left(\delta_{\mathrm{H}} 2.02\right) ; \mathrm{H}-5 / \mathrm{H}-6 ; \mathrm{H}-6 / \mathrm{H}-7 ; \mathrm{H}-7 / \mathrm{H}-8 \alpha\left(\delta_{\mathrm{H}} 1.17\right)$, $\mathrm{H}-8 \beta\left(\delta_{\mathrm{H}} 1.48\right), \mathrm{H}-11 ; \mathrm{H}-8 \beta / \mathrm{H}-9 \alpha\left(\delta_{\mathrm{H}} 1.83\right), \mathrm{H}-9 \beta\left(\delta_{\mathrm{H}} 1.77\right) ; \mathrm{H}-11 /$ Me-12, Me-13; HMBC correlation (H/C) H-1/C-2, C-5; H-2/C4, C-6; H-3/C-2, C-4, C-5, Me-15; H-5/C-6, Me-15; H-6/C-2, C-7; H-7/C-9, C-11, Me-12, Me-13; H-8/C-7, C-9; H-9/C-1, C-8, Me14; H-11/Me-12, Me-13; Me-12/C-7, Me-13; Me-13/C-7, C-11, Me-12; Me-14/C-1, C-9; Me-15/C-4, C-5; NOESY correlation (H/ H) $\mathrm{H}-1 / \mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.88\right.$), $\mathrm{H}-7, \mathrm{Me}-14 ; \mathrm{H}-6 / \mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.72$), $\mathrm{Me}-$ 12; H-5/H-11, Me-12, Me-15; H-8 $\left(\delta_{H} 1.48\right) / \mathrm{Me}-13 ; \mathrm{Me}-14 / \mathrm{H}-$
$9 \alpha\left(\delta_{\mathrm{H}} 1.83\right), \mathrm{H}-2 \alpha ;$ EIMS m/z 263 [M+] (100), 205 (16), 161 (32); HREIMS m/z 263.1696 (calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NS}$, 263.1708).
(1S*,2S*,5S*,6S*,7R*,8S*)-13-I sothiocyanatocubebane (2): colorless oil; $[\alpha]^{26}$ D -15.0 (c 1.2, CHCl_{3}); UV (EtOH) $\lambda_{\text {max }}(\epsilon) 246$ (1339) nm; IR (neat) $v_{\text {max }} 2102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY correlation (H/H) H-2/H-3 ($\delta_{H} 0.90$), $\mathrm{H}-3 \beta$ ($\delta_{\mathrm{H}} 1.62$), Me-11; $\mathrm{H}-3 \alpha / \mathrm{H}-4 \alpha$ ($\delta_{\mathrm{H}} 1.52$); H-3 $/$ H-4 α, H-5; H-4 $\beta\left(\delta_{\mathrm{H}} 0.92\right) / \mathrm{H}-5 ; \mathrm{H}-5 / \mathrm{H}-6 ; \mathrm{H}-6 / \mathrm{H}-7 ; \mathrm{H}-7 / \mathrm{H}-8 ; \mathrm{H}-8 /$ $\mathrm{H}-9 \alpha\left(\delta_{\mathrm{H}} 1.54\right), \mathrm{H}-9 \beta$ ($\delta_{\mathrm{H}} 0.72$), $\mathrm{Me}-12$ ($\delta_{\mathrm{H}} 1.00$); H-9 $\alpha / \mathrm{H}-10 \alpha$ ($\delta_{H} 1.71$); HMBC correlation (H/C) H-2/C-1, C-3, C-6, C-7; H-3/ C-1, C-2, C-11; H-4/C-2, C-3,C-6,C-13; H-5/C-3, C-6, C-7, C-13, C-14, C-15; H-6/C-1, C-4, C-5, C-8, C-10; H-7/C-2, C-5, C-6, C-8, C-9, C-10; H-8/C-6, C-7, C-9; H-9/C-1, C-7, C-8, C-10; H-10/ C-1, C-2, C-6, C-7, C-8, C-9; Me-11/C-1, C-2, C-3; Me-12/C-7, C-8, C-9; Me-14/C-5, C-13; Me-15/C-5, C-13; NOESY correlation $(\mathrm{H} / \mathrm{H}) \mathrm{H}-4 \alpha\left(\delta_{\mathrm{H}} 1.52\right) / \mathrm{Me}-14$ or $\mathrm{Me}-15 ; \mathrm{H}-4 \beta\left(\delta_{\mathrm{H}} 0.92\right) / \mathrm{H}-$ 5 ; H-6/H-5, H-9 ($\delta_{\mathrm{H}} 0.72$), Me-12; H-7/H-2, H-8, Me-14 or Me15; H-10 ($\delta_{\mathrm{H}} 1.71$)/Me11, Me-12; EIMS m/z 263 [M+] (26), 205 (50), 163 (100), 107 (32); HREIMS m/z 263.1694 (calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NS}, 263.1708$).
(1R*,3S*,4R*,7S*,8S*,12S*,13S*)-7-I socyanoamphilecta-10,14-diene (3): colorless oil; $[\alpha]^{24} \mathrm{D}-19.1$ (c 1.52, CHCl_{3}); IR (neat) $v_{\text {max }} 2130 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation (H/H) H-1/H-2 $\left(\delta_{\mathrm{H}} 1.29\right), \mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.05$), $\mathrm{H}-12, \mathrm{H}-14 ; \mathrm{H}-2 \beta / \mathrm{H}-3 ; \mathrm{H}-3 / \mathrm{H}-4, \mathrm{Me}-18 ; \mathrm{H}-4 / \mathrm{H}-5 \alpha\left(\delta_{\mathrm{H}} 1.88\right.$), $\mathrm{H}-13 ; \mathrm{H}-5 \alpha / \mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}} 2.04\right), \mathrm{H}-6 \beta\left(\delta_{\mathrm{H}} 1.80\right)$; $\mathrm{H}-5 \beta\left(\delta_{\mathrm{H}} 0.93\right) / \mathrm{H}-$ $6 \alpha, \mathrm{H}-6 \beta ; \mathrm{H}-8 / \mathrm{H}-9 \alpha\left(\delta_{\mathrm{H}} 2.26\right), \mathrm{H}-9 \beta$ ($\delta_{\mathrm{H}} 2.13$), $\mathrm{H}-13 ; \mathrm{H}-9 \alpha / \mathrm{H}-$ 10; H-9 $\alpha / \mathrm{H}-10 ; \mathrm{H}-12 / \mathrm{H}-13 ;$ HMBC correlation (H/C) H-1/C-3, C-12, C-13, C-15; H-2/C-14, Me-18; H-3/C-1, C-4, Me-18; H-4/ C-3, C-5, C-6, C-13; H-5/C-3, C-4, C-7; H-6/C-4, C-8, Me-19; H-8/C-6, C-9, C-10, C-12, C-13, Me-19; H-9/C-8, C-13; H-10/ C-9, Me-20; H-12/C-1, C-8, C-14, Me-20; H-13/C-5, C-8; H-14/ C-1, C-2, Мe-16, Мe-17; Me-16/С-14. C-15, Me-17; Me-17/Me 16; Me-18/C-2, C-3; Me-19/C-6; Me-20/C-10, C-11, C-12; NOESY correlation (H/H) H-2 α ($\delta_{\mathrm{H}} 1.29$)/H-1, Me-18; H-3/H-2 $\left(\delta_{\mathrm{H}}\right.$ 1.05), H-14; H-4/Me-18; H-12/H-1, H-8; H-13/Me-19; Me-16/ H-14; EIMS m/z 297 [M+] (100), 282 (40), 254 (28), 240 (32), 215 (24), 158 (24), 108 (32); HREIMS m/z 297.2469 (cal cd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}, 297.2457$).
(15*,3S*,4R*,7S*,8S*,12S*,13S*)-8-I socyanoamphilecta-11(20),14-diene (4): colorless oil; [$\alpha]^{26}$ d -34.1 (c 0.4, CHCl_{3}); IR (neat) $v_{\max } 2123 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 3; ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY correlation (H/H) H-1/H-2 $\alpha\left(\delta_{\mathrm{H}} 0.94\right), \mathrm{H}-2 \beta\left(\delta_{\mathrm{H}} 1.53\right)$, $\mathrm{H}-12, \mathrm{H}-14 ; \mathrm{H}-2 \beta / \mathrm{H}-3 ; \mathrm{H}-3 / \mathrm{Me}-18 ; \mathrm{H}-4 / \mathrm{H}-5 \alpha\left(\delta_{\mathrm{H}} 0.85\right)$, H-13; $\mathrm{H}-5 \beta\left(\delta_{\mathrm{H}} 2.00\right) / \mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}} 1.56\right), \mathrm{H}-6 \beta\left(\delta_{\mathrm{H}} 1.46\right) ; \mathrm{H}-6 \alpha / \mathrm{H}-7 ; \mathrm{H}-7 /$ Me-19; H-9 $\alpha\left(\delta_{H} 2.24\right) / \mathrm{H}-10 \alpha\left(\delta_{H} 2.38\right) ; \mathrm{H}-9 \beta$ ($\delta_{H} 1.27$)/H-10 β ($\delta_{\mathrm{H}} 2.23$); H-12/H-13; HMBC correlation (H/C) H-1/C-2, C-11, C-12, C-13, C-14; H-2/C-1, Me-18; H-3/C-2, C-4, C-5, Me-18; H-4/C-2, C-5, C-6, Ме-18; H-5/C-6; H-6/Me-19; H-7/C-5, C-6, Me-19; H-9/C-10; H-10/C-9, C-20; H-12/C-2, C-10, C-13, C-14, $\mathrm{C}-20 ; \mathrm{H}-13 / \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-12 ; \mathrm{H}-14 / \mathrm{C}-12, \mathrm{Me}-16, \mathrm{Me}-17$; Me 16/C-14, C-15, Me-17; Me-17/C-14, C-15, Me-16; Me-18/C-2; Me-19/C-6; H-20/C-10, C-11, C-12; NOESY correlation (H/H) $\mathrm{H}-4 / \mathrm{H}-12, \mathrm{Me}-18 ; \mathrm{H}-7 / \mathrm{H}-9 \beta$ ($\delta_{\mathrm{H}} 1.27$); H-13/H-1, H-3, H-7; H-14/ Me-16, H-12; EIMS m/z 297 [M+] (12), 270 (100), 255 (60), 227 (68); HREIMS m/z 297.2466 (calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}, 297.2457$),
(3S*,4R*, 7S*, 8S*,11S*,13S*)-8-I socyanoamphilecta-1(12),14-diene (5): colorless powder; mp $58-60{ }^{\circ} \mathrm{C}$; $[\alpha]^{24} \mathrm{D}$ +239.6 (c 3.0, CHCl_{3}); IR (KBr) $\nu_{\max } 2127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 3 ; ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation $(\mathrm{H} / \mathrm{H}) \mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}}\right.$ 1.76)/H-3; H-2 ($_{\boldsymbol{H}}$ 1.85)/H-3; H-3/H-4, Me-18; H-4/H-5 $\left(\delta_{\mathrm{H}}\right.$ 0.93), $\mathrm{H}-13 ; \mathrm{H}-5 \alpha\left(\delta_{\mathrm{H}} 1.92\right) / \mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}} 1.47\right) ; \mathrm{H}-5 \beta / \mathrm{H}-6 \alpha ; \mathrm{H}-6 \alpha /$ $\mathrm{H}-7, \mathrm{Me}-19 ; \mathrm{H}-9 \alpha\left(\delta_{\mathrm{H}} 2.22\right) / \mathrm{H}-10 \alpha\left(\delta_{H} 1.56\right), \mathrm{H}-10 \beta$ ($\delta_{H} 1.56$); $\mathrm{H}-10 \beta / \mathrm{H}-11 ; \mathrm{H}-11 / \mathrm{Me}-20$; H MBC correlation (H/C) H-2/C-1, C-4, C-12, C-14, Me-18; H-3/C-2, C-4, Me-18; H-4/Me-18; H-5/ C-4; H-6/C-5, C-8, Me-19; H-7/Me-19; H-9/C-8; H-10/C-11, C-12, Me-20; H-11/C-12, Me-20; H-13/C-1, C-3, C-4, C-5, C-8, C-9, $\mathrm{C}-12 ; \mathrm{H}-14 / \mathrm{C}-12, \mathrm{Me}-16, \mathrm{Me}-17$; $\mathrm{Me}-16 / \mathrm{C}-15, \mathrm{Me}-17$; $\mathrm{Me}-17 /$ $\mathrm{C}-15, \mathrm{Me}-16$; $\mathrm{Me}-18 / \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4 ; \mathrm{Me} 19 / \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8 ; \mathrm{Me}$ 20/C-10, C-11, C-12; NOE SY correlation (H/H) H-13/H-3, H-5 β ($\delta_{H} 0.93$), $\mathrm{H}-7, \mathrm{H}-9 \beta$ ($\delta_{\mathrm{H}} 1.57$), $\mathrm{H}-11 ; \mathrm{H}-14 / \mathrm{Me}-16 ; \mathrm{Me}-18 / \mathrm{H}-4$, H-5; Ме-19/H-9 ($\delta_{\mathrm{H}} 2.22$); EIMS m/z 297 [M+] (100), 282 (40), 255 (60), 215 (48), 159 (40); HREIMS m/z 297.2429 (cal cd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}, 297.2457$).

8-Isocyanatocycloamphilect-10-ene (6): colorless oil; $[\alpha]^{26} \mathrm{D}-20.1$ (c $2.0, \mathrm{CHCl}_{3}$); IR (neat) $\nu_{\text {max }} 2256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 4; ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation $(\mathrm{H} / \mathrm{H}) \mathrm{H}-1 /$ $\mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.20$), $\mathrm{H}-14 \alpha\left(\delta_{\mathrm{H}} 1.03\right.$); $\mathrm{H}-2 \alpha\left(\delta_{\mathrm{H}} 1.20\right) / \mathrm{H}-3 ; \mathrm{H}-3 / \mathrm{H}-4$; $\mathrm{H}-4 / \mathrm{H}-5 \alpha\left(\delta_{\mathrm{H}} 1.48\right), \mathrm{H}-13 ; \mathrm{H}-5 \beta / \mathrm{H}-6 \beta\left(\delta_{H} 1.36\right) ; \mathrm{H}-6 \alpha\left(\delta_{H} 1.28\right) /$ $\mathrm{H}-7$; $\mathrm{H}-7 / \mathrm{Me}-19$; $\mathrm{H}-12 / \mathrm{H}-13$; H MBC correlation (H/C) H-1/C1, C-3, C-12; H-2/C-1, C-3; H-2/C-3, Me-18; H-3/C-5, Мe-18; H-4/C-5, C-13, Me-18; H-5/C-4, C-7, C-8; H-6/Me-19; H-7/C-5, Me-19; H-9/C-10, C-11, C-13; H-10/C-9, C-18, C-12, C-20; H-12/ C-1, C-2, C-10, C-14, C-20; H-13/C-4, C-5, C-12; H-14/C-2, C-20, Me-16, Мe-17; Мe-16/C-15, Мe-17; Мe-17/C-15, Мe-16; Me 18/C-4; H-20/C-10, C-11, C-12, C-14, Me-16, Me-17; NOESY correlation (H/H) H-1/H-3, H-13; H-4/H-12, Me-18; H-7/H-9 β ($\delta_{\mathrm{H}} 2.32$), H-13; EIMS m/z $313\left[\mathrm{M}^{+}\right]$(88), 270 (100), 255 (44), 213 (24); HREIMS m/z 313.2405 (cal cd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}, 313.2406$).

8-Isothiocyanatocycloamphilect-10-ene (7): colorless powder; mp 73-75 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{22} \mathrm{D}-46.9$ (c 0.3, CHCl_{3}); IR (KBr) $\nu_{\text {max }} 2093 \mathrm{~cm}^{-1}$; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 245$ (1268) nm; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 4; ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlation $(\mathrm{H} / \mathrm{H}) \mathrm{H}-1 / \mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.52$), $\mathrm{H}-12, \mathrm{H}-14 \beta$ ($\delta_{\mathrm{H}} 1.07$); $\mathrm{H}-2 \beta / \mathrm{H}-3$; H-3/H-4, Me-18; $\mathrm{H}-4 / \mathrm{H}-5 \alpha\left(\delta_{\mathrm{H}} 2.02\right.$), $\mathrm{H}-13 ; \mathrm{H}-5 \alpha / \mathrm{H}-6 \alpha\left(\delta_{\mathrm{H}} 1.54\right), \mathrm{H}-6 \beta\left(\delta_{\mathrm{H}} 1.38\right)$; H-5 $/ \mathrm{H}$ H-6 α; H-6 $\alpha / \mathrm{H}-7$; H-7/Me-19; H-12/H-13; HMBC correlation (H/C) H-1/C-2, C-13; H-2/C-4, C-14; H-3/C-1, Me-18; H-4/ $\mathrm{C}-2, \mathrm{Me}-18$; $\mathrm{H}-5 / \mathrm{C}-6, \mathrm{C}-13$; H-6/C-5, Me-19; H-7/C-5, C-6, C-9, Me-19; H-9/C-10; H-10/C-9, C-20; H-12/C-2, C-10, C-20; H-13/ C-1, C-4, C-9; H-14/C-2, C-15, C-20, Me-16, Me-17; Me-16/C14, C-15, C-20, $\mathrm{Me}-17$; $\mathrm{Me}-17 / \mathrm{Me}-16$; $\mathrm{Me}-18 / \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4$; Me 19/C-6, C-7, C-8; H-20/C-10, C-14, Me-16, Me-17; NOESY correlation $(\mathrm{H} / \mathrm{H}) \mathrm{H}-1 / \mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 1.52$), $\mathrm{H}-13, \mathrm{Me}-17 ; \mathrm{H}-2 \beta / \mathrm{H}-3$; $\mathrm{H}-4 / \mathrm{Me}-18 ; \mathrm{H}-7 / \mathrm{H}-13$; $\mathrm{Me}-19 / \mathrm{H}-9 \alpha$ ($\delta_{\mathrm{H}} 2.42$), $\mathrm{H}-12$; EIMS m / z $329\left[M^{+}\right]$(100), 314 (8), 271 (40), 255 (28); HREIMS m/z 329.2153 (calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NS}, 329.2177$).

Synthesis of 6 from 8-I socyanocycloamphilect-10-ene. To a benzene (1.00 mL) solution of 8 -isocyanocycloamphilect-10-ene ($19.8 \mathrm{mg}, 66.6 \mu \mathrm{~mol}$) was added lead tetraacetate (35.5 $\mathrm{mg}, 79.9 \mu \mathrm{~mol}$) with stirring at room temperature for 1 h . The reaction mixture was diluted with diethyl ether $(5.00 \mathrm{~mL})$ and then washed with water and brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The mixture thus obtained underwent Si gel column chromatography (elution with n-hexane-EtOAc (4: 1)) to produce 6 ($17.9 \mathrm{mg}, 57.2 \mu \mathrm{~mol}, 86 \%$ yield): colorless oil; $[\alpha]^{25} \mathrm{D}-20.1$ (c 1.8, CHCl_{3}); spectral data were identical with that of natural 6 .

Synthesis of 7 from 8-I socyanocycloamphilect-10-ene. To a tetrahydrofuran (0.1 mL) solution of 8-isocyanocycl oam-philect-10-ene ($9.5 \mathrm{mg}, 32.0 \mu \mathrm{~mol}$) were added sulfur (1.2 mg , $38.4 \mu \mathrm{~mol}$), tellurium ($1.0 \mathrm{mg}, 8.0 \mu \mathrm{~mol}$), and triethylamine ($11.0 \mu \mathrm{~L}, 76.8 \mu \mathrm{~mol}$) with stirring at room temperature for 10 h. The reaction mixture was diluted with diethyl ether (3.00 mL), filtered through Si gel, and then concentrated under reduced pressure. The mixture then underwent Si gel column chromatography (elution with n-hexane) to give $\mathbf{7}(9.4 \mathrm{mg}, 28.6$ $\mu \mathrm{mol}, 89 \%$ yield): col orless oil; $[\alpha]^{23} \mathrm{D}-56.3$ (c $0.9, \mathrm{CHCl}_{3}$); spectral data were identical with that of natural 7.

8-Aminocycloamphilect-10-ene (8) from 8-I socyano-cycloamphilect-10-ene. To an ethanol (0.1 mL) solution of 8 -isocyanocycloamphilect-10-ene ($64.3 \mathrm{mg}, 216 \mu \mathrm{~mol}$) was added aqueous $\mathrm{HCl}(5 \mathrm{M}, 0.2 \mathrm{~mL})$ with stirring at $80^{\circ} \mathrm{C}$ for 30 h . To the reaction mixture was added aqueous $\mathrm{NaOH}(5 \mathrm{M}$, 0.3 mL), and then the reaction mixture was stirred for 2 h . The system was concentrated under reduced pressure, and its subsequent Si gel column chromatography (elution with n-hex-ane-EtOAc (1:1)) provided 8 ($53.8 \mathrm{mg}, 187 \mu \mathrm{~mol}, 87 \%$ yield): colorless powder; $\mathrm{mp} 78-80{ }^{\circ} \mathrm{C} ;[\alpha]^{24_{\mathrm{D}}}+47.3$ (c $2.2, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\max } 3440,3380 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, J in Hz) δ ppm $5.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4), 1.94(3 \mathrm{H}, \mathrm{m}), 1.84(2 \mathrm{H}, \mathrm{m})$, $1.54(1 \mathrm{H}, \mathrm{m}), 1.41-1.24(8 \mathrm{H}, \mathrm{m}), 1.01-0.81(4 \mathrm{H}, \mathrm{m}), 0.90(3 \mathrm{H}$, s), $0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8), 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8), 0.79(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 136.8,117.9,50.7,50.6,47.9$, $46.6,43.8,43.5,42.6,42.1,40.0,38.5,38.1,32.3,31.8,30.7$, 29.7, 25.1, 19.8, 14.7; EIMS m/z 287 [M ${ }^{+}$] (52), 270 (100), 255 (32), 213 (24), 110 (24); HREIMS m/z 287.2624 (calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}, 287.2613$).

8-(4-Bromobenzamido)cycloamphilect-10-ene (9) from 8-I socyanocycloamphilect-10-ene. To a dichloromethane $(1.0 \mathrm{~mL})$ solution of $8(22.4 \mathrm{mg}, 77.9 \mu \mathrm{~mol})$ were added triethylamine ($20 \mu \mathrm{~L}$) and p-bromobenzoyl chloride (13.2 mg , $44.4 \mu \mathrm{~mol}$) with stirring at room temperature for 1 h . The system was concentrated under reduced pressure, and Si gel column chromatography (elution with n-hexane-EtOAc (4:1)) gave $9(36.2 \mathrm{mg}, 77.0 \mu \mathrm{~mol}, 99 \%$ yield): colorless needles; mp $148-150{ }^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}+63.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$; IR (KBr) $\nu_{\text {max }} 3439$, 3352, and $1687 \mathrm{~cm}^{-1}$; UV (EtOH) $\lambda_{\text {max }}(\epsilon) 247$ (9498) nm; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, J in Hz) δ ppm 7.56 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$), $7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.4), $5.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6), 4.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $17.5,6.0), 2.04(1 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.83(1 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}$, $\mathrm{m}), 1.61(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.8,3.2), 1.53-1.42(2 \mathrm{H}, \mathrm{m}), 1.39-1.18$ $(7 \mathrm{H}, \mathrm{m}), 1.04(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5), 1.02-0.91(2 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=6.5), 0.88(3 \mathrm{H}, \mathrm{s}), 0.89-0.81(2 \mathrm{H}, \mathrm{m}), 0.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 166.6,136.1,135.6,131.8,131.8$, 128.1, 128.1, 125.3, 118.5, 57.8, 51.5, 47.7, 46.5, 45.2, 43.5, 43.3, 43.3, 38.8, 38.2, 32.6, 32.2, 31.8, 30.3, 29.8, 25.0, 19.7, 16.8; ESIMS m/z $470\left[\mathrm{MH}^{+}\right]$(100), 271 (10); HREIMS m/z 470.2074 (calcd for $\mathrm{C}_{27} \mathrm{H}_{3} \mathrm{NOBr}\left[\mathrm{MH}^{+}\right], 470.2059$).

Acknowledgment. The authors express appreciation to Taiho Pharmaceutical Co., Ltd. for measurement of the biological activity.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds ($\mathbf{1}-\mathbf{9}$). Lists of crystal data and data collection parameters, tables of fractional atomic coordinates and equivalent isotropic thermal parameters, anisotropic displacement parameters, and geometric parameters for 9 . These materials are available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2003, 20, 1-48, and previous reviews in the series.
(2) Scheuer, P. J. Acc. Chem. Res. 1992, 25, 433-439.
(3) Chang, C. W. J.; Patra, A.; Baker, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1987, 109, 6119-6123.
(4) Trimurtulu, G.; Faulkner, D. J. J. Nat. Prod. 1994, 57, 501-506.
(5) Fusetani, N.; Y asumuro, K.; Kawai, T.; Natori, T.; Brinen, L.; Clardy, J. Tetrahedron Lett. 1990, 31, 3599-3602.
(6) Hirota, H.; Tomono, Y.; Fusetani, N. Tetrahedron 1996, 95, 23592368.
(7) (a) Miyaoka, H.; Shimomura, M.; Kimura, H.; Yamada, Y.; Kim, H.S.; Wataya, Y. Tetrahedron 1998, 54, 13467-13474. (b) Wright, A. D.; König, G. M. J . Nat. Prod. 1996, 59, 710-716.
(8) Simpson, J. S.; Garson, M. J. Tetrahedron Lett. 2001, 42, 4267-4269, and references therein.
(9) Recent examples: (a) Mitome, H.; Nagasawa, T.; Miyaoka, H.; Yamada, Y.; Soest, R. W. M. J. Nat. Prod. 2003, 66, 46-50. (b) Mitome, H.; Nagasawa, T.; Miyaoka, H.; Yamada, Y.; Soest, R. W. M. Tetrahedron 2002, 58, 1'693-1696. (c)'Mitome, H.; 'Nagasawa, T.; Miyaoka, H.; Yamada, Y.; Soest, R. W. M. J . Nat. Prod. 2001, 64, 1506-1508.
(10) Capon, R. J.; Macleod, J. K. Aust. J . Chem. 1988, 41, 979-983.
(11) Ciminiello, P.; Fattorusso, E.; Magno, S.; Mayol, L. Can. J. Chem. 1987, 65, 518-522.
(12) Clark, R. J.; Stapleton, B. L.; Garson, M. J. Tetrahedron 2000, 56, 3071-3076
(13) Alvi, K. A.; Tenenbaum, L.; Crews, P. J. Nat. Prod. 1991, 54, 71-78.
(14) König, G. M.; Wright, A. D.; Angerhofer, C. K. J . Org. Chem. 1996, 61, 3259-3267.
(15) Sharma, H. A.; Tanaka, J .; Higa, T.; Lithgow, A.; Bernardinelli, G.; J efford, C. W. Tetrahedron Lett. 1992, 33, 1593-1596.
(16) Kazlauskas, R.; Murphy, P. T.; Wells, R. J . Tetrahedron Lett. 1980, 21, 315-318.
(17) He, H.; Salva, J.; Catalos, R. F.; Faulkner, D. J. J . Org. Chem. 1992, 57, 3191-3194.
(18) Stoelwinder, J.; Leusen, A. M. J. Org. Chem. 1993, 58, 3687-3691.
(19) Fujiwara, S.; Shin-I ke, T. Tetrahedron Lett. 1992, 33, 7021-7024.
(20) Flack, H. D.; Bernardinelli, G. Acta Crystallogr. 1999, A55, 908915, and references therein.
(21) The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 226525.
(22) Ishiyama, M.; Miyamoto, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. Talanta 1997, 44, 1299-1305.
(23) Tominaga, H.; I shiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. Anal. Commun. 1999, 36, 47-50.

NP030458P

[^0]: * To whom all correspondence should be addressed. Tel: +81 42676 3080. Fax: +8142676 3073. E-mail: miyaokah@ps.toyaku.ac.jp.
 ${ }^{\dagger}$ Tokyo University of Pharmacy and Life Science.
 \ddagger University of Amsterdam.

